
A High-Level Approach for Parallelizing
Legacy Applications for Multiple Target

Platforms

Ritu Arora

Texas Advanced Computing Center

Email: rauta@tacc.utexas.edu

September 23, 2014

From a Report from the Council on
Competitiveness (Compete.org)

2

Domain Experts Lacking Access to HPC Experts

• What do they really want to focus on?

– Get the science done quickly or spend time in learning low-level
details of different parallel programming paradigms?

– Leverage the investments made in legacy application development
or invest in HPC application development from scratch?

3

Which are the most widely used parallel
programming paradigms for High Performance

Computing applications?

MPI

OpenMP

CUDA

Hybrid programming

These paradigms can be classified under the
category of explicit parallelization.

4

Traditional Process of Explicit Parallelization

5

Insert Library Calls or Directives

or Write Kernels

Working Serial or Parallel Application (Legacy Application)

Identify Concurrency or Hotspots for Parallelization

Mastering Multiple Paradigms for Explicit Parallelization is
Often a Challenge for Several Domain-Experts

6

Parallel
Programming

Paradigm

MPI

OpenMP

CUDA

Hybrid (combination
of other paradigms)

Supporting
Architecture

CPU (across nodes and
cores)

CPU and Coprocessor
(across cores on a node)

GPU

Different Combinations
of Processing Elements

We are only talking
about explicit

parallelization here.
What about

architecture-specific
optimizations?

Why is Traditional Explicit Parallelization Using
Different Paradigms a Challenge?

• Manual reengineering of legacy applications can be an effort-
and time-intensive activity even for large and well-funded teams
– First, need to understand the microarchitectural details of the latest HPC

platforms

– Then, learn about the details of the supported parallel programming
paradigms

– Then, invest time and effort in manually reengineering the code

• What if you do not see good performance at the end of the
whole exercise?

7

8

• There is a need for a high-level approach that can offer a low-risk way
for domain-experts to try HPC

• There is a need for a tool that can help in porting legacy applications
to latest HPC platforms

Vision for the Desired High-Level Solution
for Explicit Parallelization

9

Legacy
Application

+
End-User

Specifications

 (Input)

OpenMP
Program
(Output)

MPI Program
(Output)

CUDA Program
(Output)

High-Level
Tool or

Framework

Hybrid
Program
(Output)

Explicit Parallelization at a High-Level

10

• Static code
analyses is
involved .

• Design
Templates
developed by
experts

What is the secret sauce that went into the design
and development of our high-level tool ?

1. Encapsulated the knowledge of expert parallel
programmers inside design templates and rules that are
used for source-to-source transformation

2. Abstracted the commonly seen standard and non-
standard steps involved in explicit parallelization

3. Adopted the user-guided approach instead of 100%
automation

11

Standard and Non-Standard Steps for
Parallelization that are Repeatable

• Examples of standard steps in developing an MPI
application (common in all MPI programs)
– Every MPI program has #include "mpi.h"

– Every MPI program has MPI_Init and MPI_Finalize
function calls

• Non-standard steps in developing an MPI application

– for-loop parallelization, data distribution, mapping of tasks to
processes, and orchestration of exchange of messages

• Steps for splitting the work in a for-loop amongst all the processes in
MPI_COMM_WORLD are standard for a given load-balancing scheme

 12

Which Interface is the right one?
• Command-Line Interface or the Interactive Parallelization

Tool (IPT)

– Most light-weight

– Convenient for small applications and low barrier to adoption

• Graphical User Interface or GUI

– Hides the transformation details from the end-user (those that
they really do not want to know about) but is heavier than IPT for
remote usage

– Convenient for small applications and low barrier to adoption

• Domain-Specific Language or Hi-Pal interface

– Convenient for large applications with repeated patterns and
cross-cutting concerns but involves a small learning curve

13

Parallel Programming Via IPT

• Our Interactive Parallelization Tool (IPT) can be used for
transforming legacy C/C++ programs into multiple parallel variants

– Support for Fortran applications will be added in future

• IPT can be used to teach and learn different parallel programming
paradigms through comparison and demonstration

– without worrying about the low-level details related to the syntax and
semantics of different paradigms

• IPT can help in porting legacy applications to latest architectures

• IPT shortens the application development cycle and hence can
quickly show the impact of the design choices on performance

– impact of static load balancing versus dynamic load-balancing

– impact of choosing MPI only versus choosing hybrid programming

 14

IPT Architecture

15

A Small Parallelization Exercise

16

1. //other code

2. NTIMES = atoi(argv[3]);

3. a = allocMatrix<double>(a, M, N);

4. b = allocMatrix<double>(b, M, N);

5. f = allocMatrix<double>(f, M, N);

6. start = 0;

7. //other code

8. printMatrix<double>(a, M, N);

9. t1 = gettime();

10. for (k = start; k < NTIMES && norm >= tolerance; k++) {

11. b = compute(a, f, b, M, N);

12. ptr = a;

13. a = b;

14. b = ptr;

15. norm = normdiff(b, a, M, N);

16. }

17. t2 = gettime();//other code

Code snippet of serial
Poisson Solver Code

Video Demo

17

https://www.youtube.com/watch?v=M81283-rxZo

Generated MPI Code for the Exercise

18

The template for exchanging
the data between the ghost
cells of submatrices on
different processes

MPI_Reduce function call

Setting the value of a variable
to the reduced value

Exchange Template

19

The generated code will have the call to the
exchange template inserted. The exchange
template has the code for exchanging the
data amongst the ghost cells in a stencil-
based code. The generated code is readable
and is easy to understand as comments are
inserted wherever necessary.

Benefits of IPT

• In how much time can you manually parallelize the Poisson
Solver program using MPI?
– IPT can help you in parallelizing this code in approximately 5 minutes

given that you know the high-level concepts related to parallel
programming, and are already familiar with IPT

– IPT inserted about 357 lines of code in the serial version of the code in
order to develop an MPI version

• In how much time can you learn a new parallel programming
paradigm and use the knowledge gained in porting legacy
application to a new platform manually?
– IPT significantly reduces the time-to-solution

• The usability study to quantify the benefits related to IPT is
pending

20

Results- Stencil-Based Pattern-16 MPI Processes

21

2D-Poisson Solver Game of Life Molecular Dynamics
0

50

100

150

200

250

300

350

400

450

MPI - Comparison of Serial and Parallel Code Runtimes

Serial

MPI - Parallel Manual

MPI - Parallel Generated

Testcases

T
im

e
(s

e
c
o

n
d

s
)

Results- Stencil-Based Pattern-16 OMP Threads

22

2D-Poisson Solver Game of Life Molecular Dynamics
0

50

100

150

200

250

300

350

400

450

OpenMP - Comparison of Serial and Parallel Code Runtimes

Serial

OpenMP - Parallel Manual

OpenMP - Parallel

Generated

Testcases

T
im

e
(s

e
c
o

n
d

s
)

Better numbers than
using MPI

Results – Stencil-Based Computations - CUDA

23

2D-Poisson Solver(2X2) Game of Life(32X32) Molecular Dynamics(32X1)
0

20

40

60

80

100

120

140

CUDA - Comparison of Serial and Parallel Code Runtimes

Serial

CUDA - Parallel

Generated

Testcases(number of threads used)

T
im

e
(s

e
c
o

n
d

s
)

Due to deliberate
choice of parallelizing a
function that is better
run on host

Slightly different versions
of the code were used for
CUDA code generation
than for MPI and OpenMP
code generation, problem
size is different too

24

Graphical User Interface (Demo)

25

Providing Specifications Through Hi-PaL (1)

Parallel section begins <hook type> (<hook pattern>)

mapping is <mapping type> {

 <Hi-PaL API for specifying the operation> <hook> &&

 in function (<function name>)

}

26

OMP_Parallel {

 <Hi-PaL API for specifying the operation> && schedule is

<schedule type> <hook> && in function (<function name>)

}

General Structure of Hi-PaL Code to Generate MPI Code

General Structure of Hi-PaL Code to Generate OpenMP Code

Providing Specifications Through Hi-PaL (2)

A set of Hi-PaL API has been developed for precisely capturing the end-users’
specifications at a high-level

27

Hi-PaL API Description

ParExchange2DArrayInt(<array

name>, <num of rows>, <num

of columns>)

Exchange neighboring values in

stencil-based computations

Parallelize_For_Loop where

(<for_init_stmt>;

<condition>; <stride>)

Parallelize for-loop with matching

condition, stride and initialization

statement

ReduceSumInt(<variable

name>)

MPI_Reduce with MPI_SUM

operation or OpenMP reduction

clause with ‘+’ operator; reduced

variable is of type integer

Parallelizing Poisson Solver (1)

28

1. //other code

2. NTIMES = atoi(argv[3]);

3. a = allocMatrix<double>(a, M, N);

4. b = allocMatrix<double>(b, M, N);

5. f = allocMatrix<double>(f, M, N);

6. start = 0;

7. //other code

8. printMatrix<double>(a, M, N);

9. t1 = gettime();

10. for (k = start; k < NTIMES && norm >= tolerance; k++) {

11. b = compute(a, f, b, M, N);

12. ptr = a;

13. a = b;

14. b = ptr;

15. norm = normdiff(b, a, M, N);

16. }

17. t2 = gettime();//other code

Code snippet of serial Poisson Solver Code

Parallelizing Poisson Solver (2)

1. Parallel section begins after ("NTIMES = atoi(argv[3]);")

mapping is Linear{

2. ParExchange2DArrayDouble (a, M, N) before statement

 ("printMatrix<double>(a, M, N);")

 && in function ("main");

3. ParExchange2DArrayDouble (b, M, N) before statement

 ("printMatrix<double>(a, M, N);")

 && in function ("main");

4. ParExchange2DArrayDouble (b, M, N) after statement

 ("b=compute(a, f, b, M, N);") && in function ("main");

5. AllReduceSumInt(norm) after statement

 ("norm = normdiff(b, a, M, N);") && in function ("main")

6. }

29

Hi-PaL Code to Generate MPI Code for Poisson Solver

Generated MPI Code for Poisson Solver (1)

1. //other code

2. NTIMES = atoi(argv[3]);

3. MPI_Init(NULL, NULL);

4. MPI_Comm_size(MPI_COMM_WORLD, &size_Fraspa);

5. MPI_Comm_rank(MPI_COMM_WORLD, &rank_Fraspa);

6. create_2dgrid(MPI_COMM_WORLD, &comm2d_Fraspa,…);

7. create_diagcomm(MPI_COMM_WORLD, size_Fraspa, …);

8. rowmap_Fraspa.init(M, P_Fraspa, p_Fraspa);

9. colmap_Fraspa.init(N, Q_Fraspa, q_Fraspa);

10. myrows_Fraspa = rowmap_Fraspa.getMyCount();

11. mycols_Fraspa = colmap_Fraspa.getMyCount();

12. M_Fraspa = M;

13. N_Fraspa = N;

14. M = myrows_Fraspa;

15. N = mycols_Fraspa;

16. a = allocMatrix<double>(a, M, N);

30

Generated MPI Code for Poisson Solver (2)

17. b = allocMatrix<double>(b, M, N);

18. f = allocMatrix<double>(f, M, N);

19. start = 0;

20. //other code

21. a = exchange<double>(a, myrows_Fraspa + 2, …);

22. b = exchange<double>(b, myrows_Fraspa + 2, …);

23. printMatrix<double>(a, M, N);

24. t1 = MPI_Wtime();

25. for (k = start; k < NTIMES && norm >= tolerance; k++) {

26. b = compute(a, f, b, M, N);

27. b = exchange<double>(b, myrows_Fraspa + 2, …);

28. ptr = a;

29. a = b;

30. b = ptr;

31. norm = normdiff(b, a, M, N);

32. MPI_Allreduce(&norm, &norm_Fraspa, 1, MPI_INT, MPI_SUM,…);

33. norm = norm_Fraspa;

34. }

36. //other code
31

Results: Poisson Solver (Hi-PaL based MPI)

32

Results: Genetic Algorithm for Content Based
Image Retrieval (Hi-PaL based MPI & OpenMP)

33

Results: Seismic Tomography Code (GUI-based
CUDA)

34

35

Results: Circuit Satisfiability Code (GUI-based
OpenMP + Offload)

Summary of Features & Benefits

• Enhances the productivity of the end-users in terms
of the reduction in the time and effort

– reduction in manual effort by over 90% while ensuring
that the performance of the generated parallel code is
within 5% of the sample hand-written parallel code

• Leverages the knowledge of expert parallel
programmers

• Separates the sequential and parallel programming
concerns while preserving the existing version of
sequential applications

36

Ongoing and Future Work

• Code cleanup and preparation for the public release

• Support for handling irregular meshes will be added in future

• Support for Fortran code generation will be added in future as
well

• Support for generating hybrid applications is available with Hi-
PaL interface. The command-line interface and GUI will be
extended to support hybrid code generation as well

37

Thanks!

Special thanks to:

Dr. Purushotham Bangalore, UAB

XSEDE for resources and interns

TACC’s STAR Partners for supporting Interns

Sponsors of this workshop

Questions or Comments?

38

Separation of Sequential and Parallel Concerns

39

