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Domain Experts Lacking Access to HPC Experts 

• What do they really want to focus on? 

– Get the science done quickly or spend time in learning low-level 
details of different parallel programming paradigms?  

– Leverage the investments made in legacy application development 
or invest in HPC application development from scratch? 
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Which are the most widely used parallel 
programming paradigms for High Performance 

Computing applications? 

MPI 

OpenMP 

CUDA 

Hybrid programming 

These paradigms can be classified under the 
category of explicit parallelization. 
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Traditional Process of Explicit Parallelization 
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Insert Library Calls or Directives 

or Write Kernels 

Working Serial or Parallel Application (Legacy Application) 

Identify Concurrency or Hotspots for Parallelization 



Mastering Multiple Paradigms for Explicit Parallelization is 
Often a Challenge for Several Domain-Experts 
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Parallel 
Programming 

Paradigm 

MPI 

OpenMP 

CUDA 

Hybrid (combination 
of other paradigms) 

Supporting 
Architecture 

CPU (across nodes and 
cores) 

CPU and Coprocessor 
(across cores on a node) 

GPU 

Different Combinations 
of Processing Elements  

We are only talking 
about explicit 

parallelization here. 
What about 

architecture-specific 
optimizations? 



Why is Traditional Explicit Parallelization Using 
Different Paradigms a Challenge? 

• Manual reengineering of legacy applications can be an effort- 
and time-intensive activity even for large and well-funded teams 
– First, need to understand the microarchitectural details of the latest HPC 

platforms 

– Then, learn about the details of the supported parallel programming 
paradigms 

– Then, invest time and effort in manually reengineering the code 

 

• What if you do not see good performance at the end of the 
whole exercise?  
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• There is a need for a high-level approach that can offer a low-risk way 
for domain-experts to try HPC 

• There is a need for a tool that can help in porting legacy applications 
to latest HPC platforms 

 



Vision for the Desired High-Level Solution 
for Explicit Parallelization 
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Legacy 
Application 

+ 
End-User 

Specifications 
 

 (Input) 

OpenMP  
Program 
(Output) 

 

MPI Program 
(Output) 

CUDA Program 
(Output) 

 

High-Level 
Tool or 

Framework 

Hybrid 
Program 
(Output) 

 



Explicit Parallelization at a High-Level 
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• Static code 
analyses is 
involved . 

• Design 
Templates 
developed by 
experts 



What is the secret sauce that went into the design 
and development of our high-level tool ? 

 

1. Encapsulated the knowledge of expert parallel 
programmers inside design templates and rules that are 
used for source-to-source transformation 

2. Abstracted the commonly seen standard and non-
standard steps involved in explicit parallelization 

3. Adopted the user-guided approach instead of 100% 
automation 
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Standard and Non-Standard Steps for 
Parallelization that are Repeatable 

• Examples of standard steps in developing an MPI 
application (common in all MPI programs) 
– Every MPI program has #include "mpi.h" 

– Every MPI program has MPI_Init and MPI_Finalize 
function calls 

 

• Non-standard steps in developing an MPI application 

– for-loop parallelization, data distribution, mapping of tasks to 
processes, and orchestration of exchange of messages 

• Steps for splitting the work in a for-loop amongst all the processes in 
MPI_COMM_WORLD are standard for a given load-balancing scheme 
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Which Interface is the right one? 
• Command-Line Interface or the Interactive Parallelization 

Tool (IPT) 

– Most light-weight  

– Convenient for small applications and low barrier to adoption  

• Graphical User Interface or GUI 

– Hides the transformation details from the end-user (those that 
they really do not want to know about) but is heavier than IPT for 
remote usage 

– Convenient for small applications and low barrier to adoption 

• Domain-Specific Language or Hi-Pal interface 

– Convenient for large applications with repeated patterns and 
cross-cutting concerns but involves a small learning curve 
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Parallel Programming Via IPT 

• Our Interactive Parallelization Tool (IPT) can be used for 
transforming legacy C/C++ programs into multiple parallel variants 

– Support for Fortran applications will be added in future 

• IPT can be used to teach and learn different parallel programming 
paradigms through comparison and demonstration 

– without worrying about the low-level details related to the syntax and 
semantics of different paradigms 

• IPT can help in porting legacy applications to latest architectures  

• IPT shortens the application development cycle and hence can 
quickly show the impact of the design choices on performance 

–  impact of static load balancing versus dynamic load-balancing 

–  impact of choosing MPI only versus choosing hybrid programming 
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IPT Architecture 
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A Small Parallelization Exercise 
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1. //other code  

2. NTIMES = atoi(argv[3]);  

3. a = allocMatrix<double>(a, M, N);  

4. b = allocMatrix<double>(b, M, N);  

5. f = allocMatrix<double>(f, M, N);  

6. start = 0;  

7. //other code  

8. printMatrix<double>(a, M, N);  

9. t1 = gettime();  

10. for (k = start; k < NTIMES && norm >= tolerance; k++) {  

11.   b = compute(a, f, b, M, N);  

12.   ptr = a;  

13.   a = b;  

14.   b = ptr;  

15.   norm = normdiff(b, a, M, N);  

16. }  

17. t2 = gettime();//other code  

Code snippet of serial 
Poisson Solver Code 



Video Demo 
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https://www.youtube.com/watch?v=M81283-rxZo


Generated MPI Code for the Exercise 
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The template for exchanging 
the data between the ghost 
cells of submatrices on 
different processes 

MPI_Reduce function call 

Setting the value of a variable 
to the reduced value 



Exchange Template 
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The generated code will have the call to the 
exchange template inserted. The exchange 
template has the code for exchanging the 
data amongst the ghost cells in a stencil-
based code. The generated code is readable 
and is easy to understand as comments are 
inserted wherever necessary. 



Benefits of IPT 

• In how much time can you manually parallelize the Poisson 
Solver program using MPI? 
– IPT can help you in parallelizing this code in approximately 5 minutes 

given that you know the high-level concepts related to parallel 
programming, and are already familiar with IPT 

– IPT inserted about 357 lines of code in the serial version of the code in 
order to develop an MPI version 

• In how much time can you learn a new parallel programming 
paradigm and use the knowledge gained in porting legacy 
application to a new platform manually? 
– IPT significantly reduces the time-to-solution 

• The usability study to quantify the benefits related to IPT is 
pending 
 

 

 

 
 

20 



Results- Stencil-Based Pattern-16 MPI Processes 
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Results- Stencil-Based Pattern-16 OMP Threads  
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Better numbers than 
using MPI 



Results – Stencil-Based Computations - CUDA 
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Due to deliberate 
choice of parallelizing a 
function that is better 
run on host 

Slightly different versions 
of the code were used for 
CUDA code generation 
than for MPI and OpenMP 
code generation, problem 
size is different too 
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Graphical User Interface (Demo) 
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Providing Specifications Through Hi-PaL (1) 

Parallel section begins <hook type> (<hook pattern>) 

mapping is <mapping type> { 

 <Hi-PaL API for specifying the operation> <hook> &&  

 in function (<function name>) 

} 
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OMP_Parallel { 

 <Hi-PaL API for specifying the operation> && schedule is   

<schedule type> <hook> && in function (<function name>) 

} 

General Structure of Hi-PaL Code to Generate MPI Code 

General Structure of Hi-PaL Code to Generate OpenMP Code 



Providing Specifications Through Hi-PaL (2) 

A set of Hi-PaL API has been developed for precisely capturing the end-users’ 
specifications at a high-level 
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Hi-PaL API Description 

ParExchange2DArrayInt(<array 

name>, <num of rows>, <num 

of columns>) 

Exchange neighboring values in 

stencil-based computations 

Parallelize_For_Loop where 

(<for_init_stmt>; 

<condition>; <stride>) 

Parallelize for-loop with matching 

condition, stride and initialization 

statement 

ReduceSumInt(<variable 

name>) 

MPI_Reduce with MPI_SUM 

operation or OpenMP reduction 

clause with ‘+’ operator; reduced 

variable is of type integer  



Parallelizing Poisson Solver (1) 

28 

1. //other code  

2. NTIMES = atoi(argv[3]);  

3. a = allocMatrix<double>(a, M, N);  

4. b = allocMatrix<double>(b, M, N);  

5. f = allocMatrix<double>(f, M, N);  

6. start = 0;  

7. //other code  

8. printMatrix<double>(a, M, N);  

9. t1 = gettime();  

10. for (k = start; k < NTIMES && norm >= tolerance; k++) {  

11. b = compute(a, f, b, M, N);  

12. ptr = a;  

13. a = b;  

14. b = ptr;  

15. norm = normdiff(b, a, M, N);  

16. }  

17. t2 = gettime();//other code  

Code snippet of serial Poisson Solver Code  



Parallelizing Poisson Solver (2) 

1. Parallel section begins after ("NTIMES = atoi(argv[3]);") 

mapping is Linear{  

2.  ParExchange2DArrayDouble (a, M, N) before statement  

    ("printMatrix<double>(a, M, N);")  

    && in function ("main");  

3.  ParExchange2DArrayDouble (b, M, N) before statement  

    ("printMatrix<double>(a, M, N);")  

    && in function ("main");  

4.  ParExchange2DArrayDouble (b, M, N) after statement  

    ("b=compute(a, f, b, M, N);") && in function ("main");  

5.  AllReduceSumInt(norm) after statement  

    ("norm = normdiff(b, a, M, N);") && in function ("main")  

6. }  
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Hi-PaL Code to Generate MPI Code for Poisson Solver 



Generated MPI Code for Poisson Solver (1) 

1. //other code  

2. NTIMES = atoi(argv[3]);  

3. MPI_Init(NULL, NULL);  

4. MPI_Comm_size(MPI_COMM_WORLD, &size_Fraspa);  

5. MPI_Comm_rank(MPI_COMM_WORLD, &rank_Fraspa);  

6. create_2dgrid(MPI_COMM_WORLD, &comm2d_Fraspa,…);  

7. create_diagcomm(MPI_COMM_WORLD, size_Fraspa, …);  

8. rowmap_Fraspa.init(M, P_Fraspa, p_Fraspa);  

9. colmap_Fraspa.init(N, Q_Fraspa, q_Fraspa);  

10. myrows_Fraspa = rowmap_Fraspa.getMyCount();  

11. mycols_Fraspa = colmap_Fraspa.getMyCount();  

12. M_Fraspa = M;  

13. N_Fraspa = N;  

14. M = myrows_Fraspa;  

15. N = mycols_Fraspa;  

16. a = allocMatrix<double>(a, M, N);  
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Generated MPI Code for Poisson Solver (2) 

17. b = allocMatrix<double>(b, M, N);  

18. f = allocMatrix<double>(f, M, N);  

19. start = 0;  

20. //other code  

21. a = exchange<double>(a, myrows_Fraspa + 2, …);  

22. b = exchange<double>(b, myrows_Fraspa + 2, …);  

23. printMatrix<double>(a, M, N);  

24. t1 = MPI_Wtime();  

25. for (k = start; k < NTIMES && norm >= tolerance; k++) {  

26. b = compute(a, f, b, M, N);  

27. b = exchange<double>(b, myrows_Fraspa + 2, …);  

28. ptr = a;  

29. a = b;  

30. b = ptr;  

31. norm = normdiff(b, a, M, N);  

32. MPI_Allreduce(&norm, &norm_Fraspa, 1, MPI_INT, MPI_SUM,…);  

33. norm = norm_Fraspa;  

34. }   

36. //other code  
31 



Results: Poisson Solver (Hi-PaL based MPI) 
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Results: Genetic Algorithm for Content Based 
Image Retrieval (Hi-PaL based MPI & OpenMP) 
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Results: Seismic Tomography Code (GUI-based 
CUDA) 
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Results: Circuit Satisfiability Code (GUI-based 
OpenMP + Offload) 



Summary of Features & Benefits 

• Enhances the productivity of the end-users in terms 
of the reduction in the time and effort  

– reduction in manual effort by over 90%  while ensuring 
that the performance of the generated parallel code is 
within 5% of the sample hand-written parallel code 

• Leverages the knowledge of expert parallel 
programmers 

• Separates the sequential and parallel programming 
concerns while preserving the existing version of 
sequential applications 
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Ongoing and Future Work 

• Code cleanup and preparation for the public release  

• Support for handling irregular meshes will be added in future 

• Support for Fortran code generation will be added in future as 
well  

• Support for generating hybrid applications is available with Hi-
PaL interface. The command-line interface and GUI will be 
extended to support hybrid code generation as well 
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Thanks! 
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Questions or Comments? 
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Separation of Sequential and Parallel Concerns 
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